Conjugate gradient (CG)-type method for the solution of Newton's equation within optimization frameworks
نویسنده
چکیده
A conjugate gradient (CG)-type algorithm CG Plan is introduced for calculating an approximate solution of Newton’s equation within large-scale optimization frameworks. The approximate solution must satisfy suitable properties to ensure global convergence. In practice, the CG algorithm is widely used, but it is not suitable when the Hessian matrix is indefinite, as it can stop prematurely. CG Plan is a symmetric variant of the composite step Bi-CG method of Bank and Chan, suitably adapted for optimization problems. It is an alternative to CG that copes with the indefinite case. We show convergence for CG Plan, then prove that the practical implementation always provides a gradient related direction within a truncated Newton method (algorithm TN Plan). Some preliminary numerical results support the theory.
منابع مشابه
Global conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملCrack Detection In Functionally Graded Beams Using Conjugate Gradient Method
In this paper the conjugate gradient (CG) method is employed for identifying the parameters of crack in a functionally graded beam from natural frequency measurement. The crack is modeled as a massless rotational spring with sectional flexibility. By using the Euler-Bernoulli beam theory on two separate beams respectively and applying the compatibility requirements of the crack, the characteris...
متن کاملA nonmonotone truncated Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based...
متن کاملTwo Settings of the Dai-Liao Parameter Based on Modified Secant Equations
Following the setting of the Dai-Liao (DL) parameter in conjugate gradient (CG) methods, we introduce two new parameters based on the modified secant equation proposed by Li et al. (Comput. Optim. Appl. 202:523-539, 2007) with two approaches, which use an extended new conjugacy condition. The first is based on a modified descent three-term search direction, as the descent Hest...
متن کاملExact and Inexact Subsampled Newton Methods for Optimization
The paper studies the solution of stochastic optimization problems in which approximations to the gradient and Hessian are obtained through subsampling. We first consider Newton-like methods that employ these approximations and discuss how to coordinate the accuracy in the gradient and Hessian to yield a superlinear rate of convergence in expectation. The second part of the paper analyzes an in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 19 شماره
صفحات -
تاریخ انتشار 2004